
ologi-
s a

ms to
f this

Due
ow-
are
om the
rly

ations
still
isting

t was
mak-
vidual

 pro-
hat
d.

s pro-
g to
CERES Software Bulletin 99-01
October 25, 1999

 Changes to the MOA Interface Software for ECMWF Data

Lisa Coleman (l.h.coleman@larc.nasa.gov)
Ed Kizer (e.a.kizer@larc.nasa.gov)
Joe Stassi (j.c.stassi@larc.nasa.gov)

1.0 Purpose

The Clouds and the Earth’s Radiant Energy System (CERES) is now incorporating meteor
cal data from the European Centres for Medium-Range Weather Forecasting (ECMWF). A
result of this decision, modifications to the interface used by the individual CERES subsyste
access the Meteorological, Ozone, and Aerosol (MOA) data are necessary. The purpose o
CERES Software Bulletin is to describe these modifications.

2.0 Introduction
With previously used sources of meteorological data, a MOA product existed for every hour.
to the high resolution, and subsequent high volume, of the ECMWF meteorological data, h
ever, an ECMWF-based MOA product exists only every six hours. Two six-hourly MOA files
now needed by the subsystems to obtain the temporally interpolated data once obtainable fr
hourly MOA files. The majority of the software modifications driven by the change to six-hou
files have been incorporated into the CERESlib module dedicated to input and output oper
on MOA files, moa_io.f90. Some changes to individual subsystem software, however, are
necessary. While the new ECMWF-based MOAs cannot be read with current interfaces, ex
MOAs accessed with the current interfaces can also be accessed with the new interfaces.

Two rules governed the changes made to accommodate the six-hourly MOA files. The firs
that the same logic must also work for hourly MOA files. The second was that no decision-
ing logic regarding the source of the meteorological data was to be incorporated in the indi
subsystems’ software. The changes described in this bulletin adhere to these two rules.

3.0 Opening MOA Files

3. 1 Hourly Subsystems

The ECMWF-based MOA files exist for hours 00, 06, 12, and 18 of each day. Subsystems
cessing data for one of those hours and using ECMWF-based MOA data need only open t
MOA file. For the remaining hours in the day, two ECMWF-based MOAs need to be opene

MOA files based on sources other than ECMWF exist for every hour of the day. Subsystem
cessing data for any hour using these MOA files need only open the MOA file correspondin
the hour being processed.
1

as
F are

ted
-

nd
ers to
r 03.

file and
RB
e for-

rs.
3.1.1 Modifications to the Hourly Subsystems’ PCF

Previously, only one version of the Logical Identifier (LID) in the Process Control File (PCF) w
necessary. Now, three versions of the same LID are necessary. The following lines in the PC
needed:

MOA LID | MOA file name for hour to be processed | Version 1
MOA LID | MOA file name for the previous six-hour file | Version 2
MOA LID | MOA file name for the next six-hour file | Version 3

Subroutine MOA_Open_Wrapper in the moa_io module will first try to open the file associa
with Version 1 on the first line. This will be successful if the requested MOA is not ECMWF
based, or is ECMWF-based for hour 00, 06, 12, or 18. If not successful, then Subroutine
MOA_Open_Wrapper will open the MOA files associated with Versions 2 and 3 on the seco
and third lines, respectively. Subroutine MOA_Open_Wrapper assumes the Version numb
be consecutive, as in the below example for a subsystem processing January 1, 1998, hou

1000 | CER_MOA....1998010103 | /CERES/sarb/data/out_comp/data/regridmoa/ | | | | 1
1000 | CER_MOA....1998010100 | /CERES/sarb/data/out_comp/data/regridmoa/ | | | | 2
1000 | CER_MOA....1998010106 | /CERES/sarb/data/out_comp/data/regridmoa/ | | | | 3

3.1.1.1 Modifications to the Hourly Subsystems’ ASCII File Generators

To generate the three lines discussed in Section 3.1.1, changes to the subsystems’ ASCII
PCF generators are necessary. The following example is taken from the Instantaneous SA
Subsystem’s ASCII file generator. In this example, CurrDay represents the current day in th
matyyyymmdd, and NextDay represents the following day also in the formatyyyymmdd. Parame-
ter names in this example will need to be tailored for each subsystem’s ASCII file generato

Build MOA filename for current hour
#
set string12 = $inSS12_$inPS12_$CCode12
set MOA_INSTANCE = $string12\.$CurrDay$CERHour
#
#
Build MOA file names for temporal interpolation
#
if ($CERHour == 0 || $CERHour == 6 || $CERHour == 12 || $CERHour == 18) then
 set MOA_INSTANCEA = $MOA_INSTANCE
 set MOA_INSTANCEB = $MOA_INSTANCE
else if ($CERHour > 0 && $CERHour < 18) then
 if ($CERHour > 0 && $CERHour < 6) then
 set CERHourA = “00“
 set CERHourB = “06“
2

1.1.
his
t
io

sub-
eous

in the
rre-
 else if ($CERHour > 6 && $CERHour < 12) then
 set CERHourA = “06“
 set CERHourB = “12“
 else if ($CERHour > 12 && $CERHour < 18) then
 set CERHourA = “12“
 set CERHourB = “18“
 endif
 set MOA_INSTANCEA = $string12\.$CurrDay$CERHourA
 set MOA_INSTANCEB = $string12\.$CurrDay$CERHourB
else if ($CERHour > 18 && $CERHour <= 23) then
 set CERHourA = “18“
 set CERHourB = “00“
 set MOA_INSTANCEA = $string12\.$CurrDay$CERHourA
 set MOA_INSTANCEB = $string12\.$NextDay$CERHourB
endif

#
Redirect file names to PCF generator
#
echo "SS5.0_Inputfile.g = CER_MOA_$MOA_INSTANCE" >> $pcf_input
echo "SS5.0_Inputfile.h = CER_MOA_$MOA_INSTANCEA" >> $pcf_input
echo "SS5.0_Inputfile.i = CER_MOA_$MOA_INSTANCEB" >> $pcf_input

In the above example, MOA_INSTANCE corresponds to LID 1000, Version 1, in Section 3.
MOA_INSTANCEA and MOA_INSTANCEB correspond to Versions 2 and 3, respectively. T
logic can be used whether or not the MOA files are ECMWF-based. If the MOA files are no
ECMWF-based, MOA_INSTANCEA and MOA_INSTANCEB are simply ignored by the moa_
module.

3.1.1.2 Modifications to the Hourly Subsystems’ PCF Generators

To include the Versions 2 and 3 of the MOA filename in the PCF, modifications to the hourly
systems’ PCF generators are also necessary. The following example is from the Instantan
SARB Subsystem’s PCF generator. Previously, only the first line existed.

#
Include MOA file names in PCF
#
echo "1000|$inputfileg|$InDir4||||1">> $PCFile
echo "1000|$inputfileh|$InDir4||||2">> $PCFile
echo "1000|$inputfilei|$InDir4||||3">> $PCFile

In the above example, the value of inputfileg corresponds to the value of SS5.0_Inputfile.g
example given for the ASCII file generator. Likewise, the values of inputfileh and inputfilei co
3

nsure
es

en.
.
d to

logic.

tem
 the
Instan-

the
) is
ur,

 (2)

rent
ber
icating
rror
rror
ment

ent,
ment

)

spond to SS5.0_Inputfile.h and SS5.0_Inputfile.i, respectively. Each subsystem needs to e
that any existing logic for defining the value of inputfileg is expanded to also define the valu
inputfileh, and inputfileg.

3.1.2 Modifications to the Hourly Subsystems’ Fortran Call to MOA_Open

Previously, the hourly subsystems opened the MOA files with a call to Subroutine MOA_Op
Subroutine MOA_Open_Wrapper has been added to interface with Subroutine MOA_Open
With one call, Subroutine MOA_Open_Wrapper determines how many MOA files to open, an
then open them, so that the individual subsystems do not need to write and maintain such
The hourly subsystems should now access Subroutine MOA_Open_Wrapper.

Subroutine MOA_Open_Wrapper returns an array, dimension 2, for the MOA unit number
instead of a scalar value as is returned by Subroutine MOA_Open. Previously, the subsys
needed a declaration statement for a scalar integer. To use the ECMWF-based MOA files,
subsystem needs a declaration statement for an array, as in the following example from the
taneous SARB Subsystem.

 INTEGER, SAVE :: MOA_Unit (2) ! New

If a MOA file for the current hour does exist, then the value of MOA_Unit (1) corresponds to
file associated with LID1000, Version 1, in the PCF (See Section 3.1.1), and MOA_Unit (2
assigned a default value by the moa_io module. If there is not a MOA file for the current ho
MOA_Unit (1) corresponds to the file associated with Version 2 in the PCF, and MOA_Unit
corresponds to the file associated with Version 3 in the PCF.

The calling arguments for the new routine, Subroutine MOA_Open_Wrapper, are also diffe
from those for the existing routine, Subroutine MOA_Open. Now, in addition to the unit num
being an array, the hour number being processed must be included. IOS, the argument ind
the statement success or failure of the file opening process, is optional. If omitted and an e
occurs, processing is terminated by Subroutine MOA_Open_Wrapper through the Toolkit e
message utility; otherwise, control is returned to the calling routine. An optional input argu
is the LID version number for the first MOA file listed in the PCF (corresponding to
$MOA_INSTANCE in Section 3.1.2). If the version number is not included in the call statem
then the first version number is assumed to be equal to 1. Another change is that the argu
indicating the read or write action has been eliminated.

 USAGE: CALL MOA_Open_Wrapper (MOA_LID, HourNum, & ! I
MOA_Unit, MOA_Header, MOA, & ! O

IOS, & ! O (Opt)
 Version) ! I (Opt

Argument Information:
MOA_LID : INPUT - Integer; Logic ID from PCF
HourNum : INPUT - Integer; Current hour number [0.. 23]
4

hour
 intro-
suc-
3

to be

lude

r uses
nth.

one
naged
ssful

hile
sed
ry. The
hich

OA
index
ment
MOA_Unit : OUTPUT - Integer Array;
Toolkit-assigned unit numbers for the MOA files

MOA_Header : OUTPUT - MOA_Header_Type
MOA Header record contents from first MOA file
(corresponding to Version 1 or Version 2) opened

IOS : OUTPUT - Integer, OPTIONAL
Success status returned from CERESlib Sbr. OpenFile. If
omitted, Sbr. MOA_Open_Wrapper controls processing
termination if a file opening error occurs.

Version : INPUT - Integer, OPTIONAL
Logic ID version number corresponding with first input MOA
file listed in PCF. If omitted, a value of 1 is assumed.

3.2 PMOA Processor

3.2.1 Modifications to the PMOA Processor’s PCF

The PCF for the PMOA Processor has entries for MOA files corresponding to each possible
of a month, plus overlapping hours from the previous and succeeding months. Prior to the
duction of ECMWF data, 12 hours of MOA data (hours 00 through 11) for the first day of the
ceeding month were necessary. With the six-hourly ECMWF-based MOA files, data from 1
hours (00 to 12) need to be included. This is an addition of one more input file that needs
indicated in the PCF.

3.2.2 Modifications to the PMOA Processor’s ASCII File Generators and PCF Generators

The PMOA Processor’s ASCII file generator and PCF generator need to be modified to inc
one more MOA input file, as indicated in Section 3.2.1.

3.2.3 Modifications to the PMOA Processor’s Opening of MOA files

Due to restrictions on the number of files that may be open at one time, the PMOA Processo
two nested DO loops to manage the opening and processing of MOA data for an entire mo
Prior to the introduction of ECMWF data, the Temporal Interpolation and Spatial Averaging
(TISA) Working Group designed the inner DO loop to open and process six hours of data,
hour at a time. The PMOA Processor was also designed to skip processing of all hours ma
by the inner DO loop if Subroutine MOA_Open returned a status value indicating an unsucce
open for any one of the hours.

To avoid attempting to open a MOA file every hour when ECMWF-based MOAs are used, w
simultaneously maintaining the capability to open a MOA file every hour when MOA files ba
on data from other sources are used, modifications to the inner DO statement are necessa
addition of an increment variable ensures that the loop is only executed for the hours for w
there are existing MOA files. This increment variable is set to the number of hours between M
files, and is defined by the moa_io module Subroutine MOA_HrIncr_Stats based on the grid
value obtained from the MOA header. If the MOAs used are ECMWF-based, then the incre
5

cre-
tine

he

the
day.
en-

ion for
ding

ma-

urly

call,
ds
ourly

ata
ally
tine.
tion
per

pper
o the
h the

tine

OA
 latitudi-
ed
variable is set to a value of six. If DAO-GEOS2 MOA files are used, then the value of the in
ment variable is equal to one. The MOA file version number, passed to the existing Subrou
MOA_Open, is also incremented for each new file to be opened according to the value of t
increment variable.

The MOA unit numbers returned from Subroutine MOA_Open are stored in an array. Prior to
use of ECMWF-based MOA files, this array was dimensioned at 24, the number of hours in a
With the introduction of the six-hourly ECMWF-based MOA files this array must now be dim
sioned at 25 so as to include hour 00 of the next day, necessary for the temporal interpolat
the last six hours of a day. In the case of ECMWF-based MOA files, unit numbers correspon
to unavailable hours are set to a default value.

4.0 Reading MOA Files

4.1 Hourly Subsystems

For the hourly subsystems, reading data from the MOA file(s) now requires additional infor
tion to what was previously required. This additional information includes an additional
MOA_Unit for the second MOA file that has been opened, and the hour. Previously, the ho
subsystems read the MOA files with a call to Subroutine MOA_Read. Subroutine
MOA_Read_Wrapper has been added to interface with Subroutine MOA_Read. With one
Subroutine MOA_Read_Wrapper determines how many MOA files to read, and to then rea
them, so that the individual subsystems do not need to write and maintain such logic. The h
subsystems should now access Subroutine MOA_Read_Wrapper.

If the MOA files are ECMWF-based, Subroutine MOA_Read_Wrapper retrieves the MOA d
from the two MOA files opened by Subroutine MOA_Open_Wrapper. The data are tempor
interpolated to the hour specified, returning one MOA structure to the subsystem’s calling rou
If the MOA data is not ECMWF-based, or the hour is 00, 06, 12, or 18, no temporal interpola
takes place. The decision on whether or not to interpolate occurs in the MOA_Read_Wrap
routine, and is based on the value of the second MOA_Unit, assigned by Subroutine
MOA_Open_Wrapper (see Section 3.1.3).

As in Subroutine MOA_Open_Wrapper, the IOS argument for Subroutine MOA_Read_Wra
is optional. If IOS is present and an error occurs reading the MOA data, control is returned t
calling argument; otherwise, Subroutine MOA_Read_Wrapper terminates processing throug
Toolkit error message utility.

While passing the MOA grid index obtained from the MOA header is necessary for Subrou
MOA_Read, it is not included in the argument list for Subroutine MOA_Read_Wrapper.

With the use of the MOA_Read_Wrapper interface contained in the moa_io module, the M
data can be accessed either according to a CERES nested region number, or according to
nal and longitudinal coordinates. To access the MOA data corresponding to a predetermin
CERES nested grid region number, the following calling sequence is necessary.
6

s, the

or

 its
ed
 CALL MOA_Read_Wrapper (MOA_Unit, HourNum, MOA_Region, & ! I
 MOA, & ! O

IOS) ! O (Opt)

To access the MOA data corresponding to specific colatitudinal and longitudinal coordinate
following calling sequence is necessary.

 CALL MOA_Read_Wrapper (MOA_Unit, HourNum, Lat, Long, & ! I
 MOA, & ! O

IOS) ! O (Opt)

Argument Information:
MOA_Unit : INPUT - Integer Array

Toolkit-assigned unit numbers for the MOA files
returned from Sbr. MOA_Open_Wrapper

HourNum : INPUT - Integer
 Current hour number [0.. 23]

Lat : INPUT - Real
Colatitudinal coordinate of sample [0.. 180]

Long : INPUT - Real
Longitudinal coordinate of sample [0.. 360]

MOA_Region : INPUT - Integer
MOA_Region number

MOA : OUTPUT -MOA_Type
MOA record corresponding to region number MOA_Region (
the values of Lat and Long)

IOS : OUTPUT - Integer, OPTIONAL
Success status returned from Fortran READ statement. If
omitted, Sbr. MOA_Read_Wrapper controls processing
termination upon encountering a file read error.

4.2 PMOA Processor

The PMOA Processor will continue to retrieve MOA data via the moa_io module Subroutine
MOA_to_TISA. Changes to the calling sequence include passing in the MOA_Unit array in
entirety instead of passing in only the MOA_Unit array element corresponding to the specifi
hour, and passing in the hour.

 CALL MOA_to_TISA (TISAregnum, UnitNums, Hour, GridIdx, & ! I
TISA) ! O

Argument Information:
TISAregnum : INPUT - Integer

TISA NESTED Region number
7

m

ng

e of

ub-
OA
r ter-

 Sub-
UnitNums : INPUT - Integer Array
Toolkit-assigned unit numbers for the MOA files returned fro
Sbr. MOA_Open_Wrapper

Hour : INPUT - Integer
Requested hour of day of MOA data [0 .. 23]

GridIdx : INPUT - Integer
MOA grid index, obtained from MOA header

TISA : OUTPUT - MOA_TYPE
A MOA type structure for the input TISA region

5.0 Closing MOA Files

5.1 Hourly Subsystems

Since there now can be multiple MOA files opened by the hourly subsystems, calls to
MOA_Close need to be replaced with a call to Subroutine MOA_Close_Wrapper. The calli
arguments include the MOA unit number array instead of a scalar argument. Subroutine
MOA_Close_Wrapper determines whether to close one or two MOA files based on the valu
the second MOA unit number array element.

As in Subroutines MOA_Open_Wrapper and MOA_Read_Wrapper, the IOS argument for S
routine MOA_Close_Wrapper is optional. If IOS is present and an error occurs closing the M
data, control is returned to the calling argument; otherwise, Subroutine MOA_Close_Wrappe
minates processing through the Toolkit error message utility.

CALL MOA_Close_Wrapper (MOA_Unit, & ! I
 IOS) ! O (Opt)

Argument Information:
MOA_Unit : OUTPUT - Integer Array

Toolkit-assigned unit numbers for the MOA files
returned from Sbr. MOA_Open_Wrapper

IOS : OUTPUT - Integer, OPTIONAL
Success status returned from Fortran CLOSE statement If
omitted, Sbr. MOA_Close_Wrapper controls processing
termination upon encountering a file read error.

5.2 PMOA Processor

The PMOA Processor will continue to close one MOA file at a time, thus the existing call to
routine MOA_Close should remain the same.
8

	CERES Software Bulletin 99-01 October 25, 1999
	1.0 Purpose

