SGE Scripting Baseline

Brian Magill
7/27/2010

Processing Steps

User sources environmental script for PGE

User enters either a single date or a range of dates

SGE Driver script

Checks the input’s validity

If a range of dates is given, verifies that this is what the user wants
Checks input files existence and that old output files have been deleted
Submits job with Launch script to SGE

Launch script controls all remaining processing

Generates PCF and PCF log files

Creates output data files

Writes run logs

All messages that used to be printed on the screen are written to the SGE log.

Currently How It Works

ENV C Shell
Script

¢ SGE Session

gsub i

=> Output Files

vV
—
Q
c
>S5
@)
>

pate(s) W) SGE_Driver

PCF Log

__

SGE Session Log

Top Command Flow

SGE Session

SGE_Driver
script

PCF Gen

script

/
\ -

script

I [- 5 Launch
Submit :
script "__;; script

Recently Added Features

Renamed SGE Wrapper script as the Launch Script
CheckFile log created by Driver renamed PCF log

Toolkit (Vault) Hash initialized with a subroutine. Has optional arguments
for toolkit version and revision.

Subsystem Hash also initialized with a subroutine
Routines to check for old output files
Optional arguments passed from Driver on to PCF generator

Proposed Change

e Turn Submit script into a function called directly by the Driver script
* Make this function generic

— Need to divide Subsystem Hash into Cataloguing and Subsystem Hashes
— SGE log name needs to be determined before the subroutine is called.
— Only value needed from subsystem hash is SGE log’s directory

* Benefit: Reuse across PGE’s and subsystems

Example: Current CER1.4P1-Submit.pl

my %Instr = CER1_4P1_env::getHash();

my SjobName = "CER1.4P1_SInstr{SS1} _SInstr{PS1_O}_SInstr{CC1_3}\ Srun_date";
push(@Args, "-N SjobName");

push(@Args, "-j y -o SInstr{SGELOGdir}");

push(@Args, "-v SS1=SInstr{SS1}");
push(@Args, "-v PS1_0=SInstr{PS1_0}");
push(@Args, "-v CC1=SInstr{CC1}");
push(@Args, "-v CC1_3=SInstr{CC1_3}");
push(@Args, "-v SW1=SInstr{SW1}");
push(@Args, "-v SW1_3=SInstr{SW1_3}");
push(@Args, "-v DATA1=SInstr{DATA1}");
push(@Args, "-v DATA1_3=SInstr{DATA1_3}");
push(@Args, "-v SAT=SInstr{SAT}");
push(@Args, "-v INST=SInstr{INST}");

Sscript_to_run = "CER1.4P1-Launch.pl”;

Ssge_command = "qsub @Args Sscript_to_run Srun_date @inputArgs\n";
#print "Ssge_command\n";

system Ssge_command;

Example: Proposed Submit function

sub submit {

my %catalog = %{(shift)};
my %additionalArgs = %{(shift)};
my (Srun_date, SjobName, SsgelLogDir) = @_;

push(@Args, "-N SjobName");
push(@Args, "-j y -o SsgelLogDir");

foreach my Skey(keys %catalog) {

push(@Args, "-v Skey=".Scatalog{Skey});
}

my SpgeName = Scatalog{'PGE'};

Sscript_to_run =" SpgeName \-Launch.pl”;

Ssge_command = "qsub @Args Sscript_to_run Srun_date @inputArgs\n";
#print "Ssge_command\n";

system Ssge_command;

Hash Table:

Data structure containing name to value associations

Also known as an associative array, dictionary, or map depending upon
computer language.

Like an array, but “index” is a string instead of an integer
Stored unordered. Not guaranteed to be contiguous in memory

Perl example:

my %hash;
Shash{‘PS1_1'} = ‘Edition1-CV’;
print SENV{'"HOSTTYPE’}, “\n”;

Proposed Hash Tables common to scripts

Vault Hash Catalog Hash Subsystem Hash

PGE Name

— Subsystem Directory
CERESIib Directory Sampling Strategies Paths

Toolkit Directories Production Strategies

Load Libraries Configuration Codes

Conclusion

* Minor changes to Phase | since last May’s presentation.
* No substantial future changes envisioned for Phase |I.

Looking Forward

PR Data Base — design review tentatively planned for week of August 16

After review, build PR Data Base and applications to enter, review, and
modify PR information

Prepare an end-to-end operational concept and explore possible
alternatives to current approach for handling sourced environments, as
requested by Pam Rinsland on May 13.

Expand scripting team to include members from ASDC and more seasoned
DMT developers

Script modifications to enable interfacing with data base and alternative
approaches to handling sourced environments will be evaluated by larger
group of people than the expanded scripting team - SEC

Team also to participate in development of a plan for an incremental
implementation of script updates and actual deployment of interface with
PR database

Adopt a more iterative development --> SIT testing approach

