
SGE Scripting Baseline

Brian Magill

7/27/2010

• User sources environmental script for PGE

• User enters either a single date or a range of dates

• SGE Driver script
– Checks the input’s validity

– If a range of dates is given, verifies that this is what the user wants

– Checks input files existence and that old output files have been deleted

– Submits job with Launch script to SGE

• Launch script controls all remaining processing
– Generates PCF and PCF log files

– Creates output data files

– Writes run logs

– All messages that used to be printed on the screen are written to the SGE log.

Processing Steps

Currently How It Works

SGE_Driver
Launch

SGE Session

Environment

ENV C Shell
Script

Date(s)

qsub

Input Files

Output Files

Run Logs

SGE Session Log

PCF Log
PCF Log

SGE_Driver
script

Submit
script

Launch
script

PCF Gen
script

Run
script

SGE Session

Top Command Flow

Recently Added Features

• Renamed SGE Wrapper script as the Launch Script

• CheckFile log created by Driver renamed PCF log

• Toolkit (Vault) Hash initialized with a subroutine. Has optional arguments
for toolkit version and revision.

• Subsystem Hash also initialized with a subroutine

• Routines to check for old output files

• Optional arguments passed from Driver on to PCF generator

Proposed Change

• Turn Submit script into a function called directly by the Driver script

• Make this function generic
– Need to divide Subsystem Hash into Cataloguing and Subsystem Hashes

– SGE log name needs to be determined before the subroutine is called.

– Only value needed from subsystem hash is SGE log’s directory

• Benefit: Reuse across PGE’s and subsystems

Example: Current CER1.4P1-Submit.pl

my %Instr = CER1_4P1_env::getHash();
my $jobName = "CER1.4P1_$Instr{SS1} _$Instr{PS1_0}_$Instr{CC1_3}_$run_date";
push(@Args, "-N $jobName");
push(@Args, "-j y -o $Instr{SGELOGdir}");

.

.

.
push(@Args, "-v SS1=$Instr{SS1}");
push(@Args, "-v PS1_0=$Instr{PS1_0}");
push(@Args, "-v CC1=$Instr{CC1}");
push(@Args, "-v CC1_3=$Instr{CC1_3}");
push(@Args, "-v SW1=$Instr{SW1}");
push(@Args, "-v SW1_3=$Instr{SW1_3}");
push(@Args, "-v DATA1=$Instr{DATA1}");
push(@Args, "-v DATA1_3=$Instr{DATA1_3}");
push(@Args, "-v SAT=$Instr{SAT}");
push(@Args, "-v INST=$Instr{INST}");

.

.

.

$script_to_run = "CER1.4P1-Launch.pl”;
$sge_command = "qsub @Args $script_to_run $run_date @inputArgs\n";
#print "$sge_command\n";
system $sge_command;

Example: Proposed Submit function

sub submit {

my %catalog = %{(shift)};
my %additionalArgs = %{(shift)};
my ($run_date, $jobName, $sgeLogDir) = @_;

push(@Args, "-N $jobName");
push(@Args, "-j y -o $sgeLogDir");

.

.

.
foreach my $key(keys %catalog) {

push(@Args, "-v $key=".$catalog{$key});
}

.

.

.

my $pgeName = $catalog{'PGE'};
$script_to_run = ” $pgeName \-Launch.pl”;
$sge_command = "qsub @Args $script_to_run $run_date @inputArgs\n";
#print "$sge_command\n";
system $sge_command;

Hash Table:

• Data structure containing name to value associations

• Also known as an associative array, dictionary, or map depending upon
computer language.

• Like an array, but “index” is a string instead of an integer

• Stored unordered. Not guaranteed to be contiguous in memory

Perl example:

my %hash;
$hash{‘PS1_1’} = ‘Edition1-CV’;
print $ENV{‘HOSTTYPE’}, “\n”;

Proposed Hash Tables common to scripts

Catalog Hash

PGE Name

Sampling Strategies

Production Strategies

Configuration Codes

Vault Hash

CERESlib Directory

Toolkit Directories

Load Libraries

Subsystem Hash

Subsystem Directory
Paths

Conclusion

• Minor changes to Phase I since last May’s presentation.

• No substantial future changes envisioned for Phase I.

Looking Forward

• PR Data Base – design review tentatively planned for week of August 16
• After review, build PR Data Base and applications to enter, review, and

modify PR information
• Prepare an end-to-end operational concept and explore possible

alternatives to current approach for handling sourced environments, as
requested by Pam Rinsland on May 13.

• Expand scripting team to include members from ASDC and more seasoned
DMT developers

• Script modifications to enable interfacing with data base and alternative
approaches to handling sourced environments will be evaluated by larger
group of people than the expanded scripting team - SEC

• Team also to participate in development of a plan for an incremental
implementation of script updates and actual deployment of interface with
PR database

• Adopt a more iterative development --> SIT testing approach

