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. A critical element of cumulus parameterizations is their
closure, which relates overall cumulus intensity to properties of
the resolved flow in the model, e.g., cumulus mass flux to
convective available potential energy (CAPE) or its
generalization, cloud work function (CWF).

Il. Despite the importance of closure, very little observational
research until recently on the realism of hypothesized closures,
which have been based on CAPE or CWF.

[ll. Typically, closures relate mass flux to CAPE or CWF by
assuming (1) mass flux function of CAPE or CWF, (2) CAPE or
CWF in quasi-equilibrium, (3) CWF evolves prognostically.

IV. Zhang (2002, JGR) recently used ARM observations to
examine lli(1) and I1I(2) for mid-latitude continental convection.
This paper examines oceanic convection and also uses a cloud-
resolving model to evaluate these closures.




Is Cumulus Intensity (Precipitation, Mass
Flux) a Simple Function of CAPE?

This closure, or variants based on quantities similar to CAPE, is
used in many atmospheric general circulation models,e.g.,
NCAR CAM (Zhang et al., 1998, J. Clim.), GFDL Relaxed
Arakawa-Schubert, HadAM3 (Pope et al., 2000, Clim. Dyn.),
ECMWF (Gregory et al., 2000, Quart J. Roy. Met. Soc.)

LFC
CAPE = R, J' (T,.-Tidlnp
LZR

R, is gas constant; LFc is pressure at level of free convection;
Lze is pressure at level of zero buoyancy; 7 _ is virtual
temperature of non-entraining parcel lifted adiabatically from

planetary boundary layer; Tis large-scale temperature; and » is
pressure.

Cloud work function is a generalization of CAPE to allow for
entrainment into the lifted parcel. HadAM3 uses only near-
surface measure of stability instead of full CAPE.
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ARM . CHM profiles
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Is Cumulus Intensity Determined by CAPE
Equilibrium?

A variant of this closure, based on cloud work function, is used
in Arakawa and Schubert (1974, J. Atmos. Sci.). Donner (2001, J.
Clim.) uses CAPE equilibrium.

To evaluate this closure, examine the time evolution of CAPE for
mid-continent and tropical oceans. Field data from the ARM,
TOGA-COARE, and GATE experiments. It will be useful to think
of CAPE as a function of parcel and large-scale variables.

CAPE = CAPE(T e op Qpupeer T) = CAPE(T 10,9, T)

Differentiating,

ACAPE = dCAPEpy; +3CAPEL
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ARMNM . CRHRM profiles (2D)
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SCE5S2 0 CHEM profiles (2D
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CAPE Evolution under Deep Cumulus and
Implications for Closure

|. CAPE evolution is tightly coupled to planetary boundary layer.

Il. CAPE is definitely NOT in equilibrium under deep cumulus
convection.

ACAPE = 3CAPEpg; +3CAPE,=3CAPEpy,

lll. As closure, use the approximation (Stationary PBL):

aCAFET =10




ARM : Observed profiles
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ARM . CSRHRM profiles (2D)
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SCE5S2 0 CRM profiles (209
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ARM : Ob=served profiles
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CAPE Evolution under Deep Cumulus and
Implications for Closure

|. CAPE evolution is tightly coupled to planetary boundary layer.

Il. CAPE is definitely NOT in equilibrium under deep cumulus
convection.

ACAPE = 3CAPEpg; +3CAPE,=3CAPEpy,

lll. As closure, use the approximation (Stationary PBL):

aCAFET =10

IV. This closure is a better approximation to observations than is
CAPE equilibrium. But, is it likely to really be correct?
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Conclusion

l. Cumulus intensity is not simply related to CAPE (or cloud
work function), challenging closures in many major GCMs.

Il. CAPE evolution under deep cumulus convection is driven
primarily by large changes in the planetary boundary layer. The
relative smallness of CAPE changes due to temperature
changes above the boundary layer provides a closure in better
agreement with observations and CRM results than CAPE quasi-
equilibrium. Results of Zhang (2002, JGR) largely confirmed.

lll. CRMs suggest individual cumulus parcels “see” local CAPE
values that differ by many factors from the large-scale CAPE.
Large-scale CAPE by itself is not ultimately a good candidate for
closure.

IV. CAPE is fundamentally not in equilibrium under deep
cumulus.

“If we were in equilibrium, we would not only be dead-we would
be homogeneous!” ...Sidney Nagel (2002), “Physics in Crisis”




